PyBrain库的example之NFQ流程图分析
有关PyBrain 库中NFQ算法的流程图分析,包括数据处理和策略的优化pipeline.
PyBrain库的example之NFQ流程图分析
如下是测试程序。主要分析doEpisode和learn两个函数。
__author__ = 'Thomas Rueckstiess, ruecksti@in.tum.de'
from pybrain.rl.environments.cartpole import CartPoleEnvironment, DiscreteBalanceTask, CartPoleRenderer
from pybrain.rl.agents import LearningAgent
from pybrain.rl.experiments import EpisodicExperiment
from pybrain.rl.learners.valuebased import NFQ, ActionValueNetwork
#,ActionValueLSTMNetwork
from pybrain.rl.explorers import BoltzmannExplorer
from numpy import array, arange, meshgrid, pi, zeros, mean
from matplotlib import pyplot as plt
# switch this to True if you want to see the cart balancing the pole (slower)
render = False #True #
plt.ion()
env = CartPoleEnvironment()
if render:
renderer = CartPoleRenderer()
env.setRenderer(renderer)
renderer.start()
# balancetask. py inside only used 2 sensors, so here can not use(4,3), just use (2,3)
# there is a debug in vesion 0.30, now, new version 0.33 had correct it!!
module = ActionValueNetwork(4,3) #(4,3) # 0.33 had correct it
#module = ActionValueLSTMNetwork(2,3)
task = DiscreteBalanceTask(env, 100)
learner = NFQ()
learner.explorer.epsilon = 0.4
agent = LearningAgent(module, learner)
testagent = LearningAgent(module, None)
experiment = EpisodicExperiment(task, agent)
def plotPerformance(values, fig):
plt.figure(fig.number)
plt.clf()
plt.plot(values, 'o-')
plt.gcf().canvas.draw()
performance = []
if not render:
pf_fig = plt.figure()
#while (True):
for _ in xrange(60): #60
# one learning step after one episode of world-interaction!!!
experiment.doEpisodes(1)
agent.learn(2) # 5
# test performance (these real-world experiences are not used for training)
if render:
env.delay = True
experiment.agent = testagent
#r = mean([sum(x) for x in experiment.doEpisodes(5)])
env.delay = False
testagent.reset()
experiment.agent = agent
#performance.append(r)
print "update step", len(performance)
#print "reward avg", r
print "explorer epsilon", learner.explorer.epsilon
print "num episodes", agent.history.getNumSequences()
print "update step", len(performance)
if not render:
plotPerformance(performance, pf_fig)
str = raw_input("please input sth to end!")
print "you put :",str
experiment.doEpisodes(1)
agent.learn(2)
图2的注释2部分,可以参考该博文深度强化学习初探 ,但是他文中的公式应该有点问题。应该把$Q_{m+1}$改为$Q_m$,进一步参考维基百科Q-learning ,如下所示。
$$ Q_{m+1}(s_t,a_t)=Q_m(s_t,a_t)+α[r_{t+1}+γQ_m(s_{t+1},a_{t+1})−Q_m(s_t,a_t)] $$推荐所用的画图软件process on
- 用起来挺方便的,在线用谷歌浏览器运行,用户体验挺佳,比visio2010快多了;
- 可以多用户协作;
- 目前有一个缺点就是一个框里面的字体格式必须是一样的,不可以修改一个框里面部分的文字的格式。有点类似PS的思想。
Authors
Senior Researcher
My research interests include large language model, Reinforcement learning for Recommender System and Automatic (AI) Systems.